Characterization modeling and H∞ control of n-DOF Piezoelectric actuators : Application to a 3-DOF precise positioner
نویسندگان
چکیده
This paper deals with the characterization, the modeling and the closedloop control of multivariable piezoelectric actuators, with an application to a 3-DOF piezoelectric tube scanner, widely used in precise positioning. These actuators are typified by hysteresis and creep nonlinearities, badly damped oscillation and strong couplings between their axis. First, during the modeling, we propose to decouple the system and to use a linear model where the couplings and the two nonlinearities are integrated through an external fictive disturbance. From the obtained monovariable systems, monovariable H∞ controllers are calculated by using specifications based on model approximation. The experimental tests demonstrate the efficiency of the method to reject simultaneously the couplings, hysteresis, creep and badly damped oscillations. Furthermore, the bandwidth of the closed-loop and the open-loop systems are compared and the results show that the proposed control technique allows to achieve a convenient closed-loop bandwidth and precision for all the axis of the precise positioner.
منابع مشابه
Integrator Backstepping Control of a 5 DoF Robot Manipulator with Cascaded Dynamics
In this paper, dynamic equations of motion of a 5 DoF robot manipulator including mechanical arms with revolute joints and their electrical actuators are considered. The application of integrator backstepping technique for trajectory tracking in presence of parameters of uncertainty and disturbance is studied. The advantage of this control technique is that it imposes the desired properties of ...
متن کاملMultivariable Generalized Bouc-Wen Modeling, Identification and Feedforward Control and Its Application to Multi-DoF Piezoelectric Actuators
In the literature, the generalized Bouc-Wen model can track precisely asymmetric hysteresis nonlinearity. In this paper, we propose to extend this generalized model to multivariable hysteresis model that can track the nonlinearities in multi-degrees of freedom (multi-DoF) hysteretic actuated systems. In particular, these systems are typified by strong hysteresis couplings. Then, a method of ide...
متن کاملPlug-In Robust Compensator for a 3 DOF Piezoelectric Nanorobotic Positioner
In current AFM-based nanomanipulation systems, the commercial position closedloop controller for piezoelectric nanopositioning stages are implemented with success in a wide range of industrial applications. Even if these controllers operate with satisfactory nominal tracking performance, considerable attention has been focused on appropriate control strategies to compensate hysteresis, nonlinea...
متن کاملDynamic modeling and control of a 4 DOF robotic finger using adaptive-robust and adaptive-neural controllers
In this research, first, kinematic and dynamic equations of a 4-DOF 3-link robotic finger are derived using Denavit-Hartenberg convention and Lagrange’s formulation. To model the muscles, several springs and dampers are placed between the finger links. Then, two advanced controllers, namely adaptive-robust and adaptive-neural, which can control the robotic finger in presence of parametric uncer...
متن کاملModeling and Identification of a 3-DOF Planar Actuator with Manipulator
The goal of this paper is to describe the identification and modeling of a 3-degree-of-freedom (DOF) platform with a manipulator on top of it, which is magnetically levitated by 9 voice-coil actuators. This 3-DOF experimental setup is a pre-prototype of a 6-DOF magnetically levitated platform with manipulator in order to study combined control of both the platform and manipulator.
متن کامل